Nonsurgical Management of Urinary Incontinence in Women: A Clinical Practice Guideline From the American College of Physicians

Amir Qaseem, MD, PhD, MHA; Paul Dallas, MD; Mary Ann Forciea, MD, MS; Melissa Starkey, PhD; Thomas D. Denberg, MD, PhD; and Paul Shekelle, MD, PhD, for the Clinical Guidelines Committee of the American College of Physicians*

Description: The American College of Physicians (ACP) developed this guideline to present the evidence and provide clinical recommendations on the nonsurgical management of urinary incontinence (UI) in women.

Methods: This guideline is based on published English-language literature on nonsurgical management of UI in women from 1990 through December 2013 that was identified using MEDLINE, the Cochrane Library, Scirus, and Google Scholar. The outcomes evaluated for this guideline include continence, improvement in UI, quality of life, adverse effects, and discontinuation due to adverse effects. It grades the evidence and recommendations by using ACP’s guideline grading system. The target audience is all clinicians, and the target patient population is all women with UI.

Recommendation 1: ACP recommends first-line treatment with pelvic floor muscle training in women with stress UI. (Grade: strong recommendation, high-quality evidence)

Recommendation 2: ACP recommends bladder training in women with urgency UI. (Grade: weak recommendation, low-quality evidence)

Recommendation 3: ACP recommends pelvic floor muscle training with bladder training in women with mixed UI. (Grade: strong recommendation, high-quality evidence)

Recommendation 4: ACP recommends against treatment with systemic pharmacologic therapy for stress UI. (Grade: strong recommendation, low-quality evidence)

Recommendation 5: ACP recommends pharmacologic treatment in women with urgency UI if bladder training was unsuccessful. Clinicians should base the choice of pharmacologic agents on tolerability, adverse effect profile, ease of use, and cost of medication. (Grade: strong recommendation, high-quality evidence)

Recommendation 6: ACP recommends weight loss and exercise for obese women with UI. (Grade: strong recommendation, moderate-quality evidence)

Summary for Patients I-34

Web-Only
Supplement
CME quiz

See also:

© 2014 American College of Physicians

This article has been corrected. The specific correction appears on the last page of this document. The original version (PDF) is available at www.annals.org.
Table 1. Nonpharmacologic Treatments for UI

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFMT</td>
<td>Instruction on the voluntary contraction of pelvic floor muscles (Kegel exercises)</td>
</tr>
<tr>
<td>PFMT with biofeedback using vaginal EMG</td>
<td>PFMT with EMG probe used to give patients visual feedback on when they are properly contracting the pelvic floor muscles</td>
</tr>
<tr>
<td>Bladder training</td>
<td>Behavioral therapy that includes extending the time between voiding</td>
</tr>
<tr>
<td>Continence service</td>
<td>Treatment program involving nurses and clinicians trained in identifying, diagnosing, and appropriately treating patients with UI</td>
</tr>
</tbody>
</table>

EMG = electromyography; PFMT = pelvic floor muscle training; UI = urinary incontinence.

METHODS

This guideline is based on a systematic evidence review (11) that addressed the following key questions related to the diagnosis and nonsurgical management of UI:

1. How effective is the nonpharmacologic treatment of UI in women?
 1a. How do nonpharmacologic treatments affect incontinence, severity and frequency of UI, and quality of life compared with no active treatment?
 1b. How do combined methods of nonpharmacologic treatments with drugs affect incontinence, severity and frequency of UI, and quality of life compared with no active treatment or monotherapy?
 1c. What is the comparative effectiveness of different nonpharmacologic treatments?
 1d. What are the harms of nonpharmacologic treatments compared with no active treatment?
 1e. What are the comparative harms of different nonpharmacologic treatments?
 1f. Which patient characteristics, including age, type and severity of UI, baseline disease that affects UI, adherence to treatment recommendations, and comorbid conditions, can modify the effects of nonpharmacologic treatments on patient outcomes, such as continence, quality of life, and harms?

2. How effective is the pharmacologic treatment of UI in women?
 2a. How do pharmacologic treatments affect continence, severity and frequency of UI, and quality of life compared with no active treatment or combined treatment methods?
 2b. What is the effectiveness of pharmacologic treatments compared with each other or with nonpharmacologic treatments of UI?
 2c. What are the harms of pharmacologic treatments compared with no treatment?
 2d. What are the harms of pharmacologic treatments of UI compared with each other or with nonpharmacologic treatments?
 2e. Which patient characteristics, including age, type and severity of UI, baseline disease that affects UI, adherence to treatment recommendations, and comorbid conditions, can modify the effects of pharmacologic treatments on patient outcomes, such as continence, quality of life, and harms?

The systematic evidence review was done by the Minnesota Evidence-based Practice Center. The literature search included English-language studies published between 1990 and December 2011 identified using MEDLINE, the Cochrane Library, Scirus, and Google Scholar as well as manual searches of reference lists from systematic reviews. Literature was updated through December 2013, focusing on treatments most relevant to primary care (see the Supplement for details). Data were extracted using a standardized form, and study quality was assessed according to the Methods Guide for Effectiveness and Comparative Effectiveness Reviews (12). This guideline focuses on treatments most relevant to primary care clinicians; the full report (11) and published article (13) contain more details.

This guideline rates the evidence and recommendations by using ACP’s guideline grading system (Table 2). Details of the guideline development process can be found in the methods paper (14).

DIAGNOSIS

Because most women with UI do not report it to their physicians (4), physicians should proactively ask female patients about bothersome UI symptoms as part of a routine review of systems. Clinicians should take a focused history and ask specific questions, such as the time of onset, symptoms, and frequency (4). Clinicians should also do a focused physical examination and evaluate neurologic symptoms. Asking such questions as “Do you have a problem with urinary incontinence (of your bladder) that is bothersome enough that you would like to know more about how it could be treated?” as part of a quality improvement intervention has been shown to increase appropriate care by 15% in patients aged 75 years or older (15).
TREATMENT

Complete continence, a clinically important improvement in UI (defined as reducing UI frequency by ≥50%), and quality of life were the primary outcomes assessed in the systematic review to evaluate the effectiveness of nonpharmacologic and pharmacologic treatments.

Nonpharmacologic Treatment

Appendix Table 1 (available at www.annals.org) summarizes nonpharmacologic treatments.

Stress UI: Nonpharmacologic Treatment

PFMT Versus No Active Treatment. High-quality evidence showed that PFMT is an effective UI treatment compared with no active treatment. Pooled data from studies that included women with stress UI (16–18) showed increased continence rates with PFMT compared with no active treatment (number needed to treat for benefit [NNT_B], 3 [95% CI, 2 to 5]). High-quality evidence showed that PFMT was more than 5 times as effective as no active treatment in improving UI (NNT_B, 2 [CI, 2 to 6]) (16, 19–23). In addition, studies reported improved quality of life (11).

PFMT With Biofeedback Using a Vaginal Electromyography Probe Versus No Active Treatment. Low-quality evidence showed that PFMT with biofeedback using a vaginal electromyography probe increased continence compared with no active treatment (16, 20). High-quality evidence showed that this treatment improved UI compared with no active treatment (NNT_B, 3 [CI, 2 to 6]) (16, 19, 20, 24).

Other Treatments. Evidence was insufficient to determine the effectiveness of vaginal cones and pessaries or of intravaginal and intraurethral devices versus no active treatment (11).

Urgency UI: Nonpharmacologic Treatment

Bladder Training Versus No Active Treatment. Low-quality evidence showed that bladder training improved UI compared with no active treatment (NNT_B, 2 [CI, 2 to 4]) (25, 26). However, evidence on bladder training for achieving complete continence was insufficient (11).

Mixed UI: Nonpharmacologic Treatment

PFMT Versus No Active Treatment. Pooled data from studies that included women with mixed UI (18, 20, 27) showed increased continence rates with PFMT compared with no active treatment.

PFMT Plus Bladder Training Versus No Active Treatment. High-quality evidence showed that PFMT combined with bladder training achieved continence (NNT_B, 6 [CI, 4 to 16]) (28–32) and improved UI (NNT_B, 3 [CI, 2 to 6]) (28, 30–32) compared with no active treatment.

Continence Service Versus No Active Treatment. Continence service involves nurses and clinicians trained to identify, diagnose, and appropriately treat patients with UI. Moderate-quality evidence showed that this service yielded no statistically significant improvement in continence compared with no active treatment (33–35). Low-quality evidence showed no consistent statistically significant improvement in UI (35, 36).

Weight Loss and Physical Activity Versus No Active Treatment. Moderate-quality evidence indicated that weight loss and exercise improved UI in obese women (NNT_B, 4 [CI, 2 to 18]) (37, 38).

Other Treatments. Evidence was insufficient to determine the effectiveness of behavioral modification programs, a soy-enriched diet, or acupuncture for improving UI in women with mixed UI (11).

Comparative Effectiveness of Nonpharmacologic Treatments

No evidence showed that one nonpharmacologic treatment was superior to another in the various comparisons assessed for stress, urgency, or mixed UI. Further details are available in the full systematic review (11) and the Supplement.

Pharmacologic Treatment

Appendix Table 2 (available at www.annals.org) summarizes pharmacologic treatments.

Stress UI: Pharmacologic Treatment

Nonsystemic Estrogen Therapy Versus Placebo. Overall evidence was insufficient to determine the effectiveness of topical estrogen therapies at improving UI. Evidence showed increased continence and improved UI with vaginal estrogen formulations, but transdermal patches were associated with worsened UI. Studies used a range of estrogen applications.

Urinary incontinence improved with vaginal estrogen tablets (39) and vaginal ovsules (40) compared with placebo. Vaginal estrogen tablets increased continence compared with placebo (NNT_B, 5 [CI, 3 to 12]) (39–42). An
estradiol implant did not improve UI compared with placebo (41).

Intravaginal Estriol Plus PFMT Versus Intravaginal Estriol. Low-quality evidence from 1 study showed that a combination of intravaginal estriol plus PFMT more effectively achieved continence than intravaginal estriol alone (NNTB, 1 [CI, 1 to 2]) (43).

Duloxetine Versus Placebo. Low-quality evidence showed that continence was reduced less with duloxetine than placebo (44, 45). High-quality evidence showed that duloxetine did not statistically significantly improve UI compared with placebo (NNTB, 13 [CI, 7 to 143]) (44, 46–49). Low-quality evidence showed that duloxetine improved quality of life (45, 49, 50). However, quality of life did not improve in women with severe stress UI or overactive bladder (46, 51).

Urgency UI: Pharmacologic Treatment With Antimuscarinics

- **Darifenacin Versus Placebo.** High-quality evidence showed that darifenacin improved UI compared with placebo (NNTB, 9 [CI, 6 to 18]) (52–54). Achieving complete continence was not studied as an outcome with darifenacin treatment. High-quality evidence also showed that darifenacin improved quality of life (11).

- **Fesoterodine Versus Placebo.** Moderate-quality evidence showed that fesoterodine achieved continence more than placebo (NNTB, 8 [CI, 6 to 11]) (55–57). High-quality evidence also showed an improvement in UI (NNTB, 10 [CI, 7 to 18]) (56, 58–60). Low-quality evidence showed that fesoterodine also improved quality of life (11).

- **Oxybutynin Versus Placebo.** High-quality evidence showed that oxybutynin achieved continence more than placebo (NNTB, 9 [CI, 6 to 16]) (61–65). Moderate-quality evidence showed that this agent also improved UI (NNTB, 6 [CI, 4 to 11]) (24, 61, 62, 64, 66–73).

- **Propiverine Versus Placebo.** Low-quality evidence showed that propiverine achieved continence more than placebo (NNTB, 6 [CI, 4 to 12]) (74, 75), and moderate-quality evidence showed that it improved UI (NNTB, 5 [CI, 4 to 8]) (74–76) compared with placebo.

- **Solifenacin Versus Placebo.** High-quality evidence showed that solifenacin achieved continence more than placebo (NNTB, 9 [CI, 6 to 17]) (77–81), and low-quality evidence indicated that it resolved UI compared with placebo (NNTB, 6 [CI, 4 to 10]) (81, 82). Low-quality evidence from 1 study showed that higher doses of solifenacin (10 mg/d vs. 5 mg/d) did not decrease the frequency of UI episodes and were associated with increased risk for adverse effects (83).

- **Tolterodine Versus Placebo.** High-quality evidence showed that tolterodine achieved continence (NNTB, 12 [CI, 8 to 25]) (55, 56, 84, 85) and improved UI (NNTB, 10 [CI, 7 to 24]) (55, 56, 59, 86–90) more than placebo. Low-quality evidence showed that tolterodine improved quality of life (11).

Urgency UI: Pharmacologic Treatment With 3-Adrenoceptor Agonists

- **Mirabegron Versus Placebo.** Moderate-quality evidence showed that mirabegron achieved continence more than placebo (NNTB, 12 [CI, 7 to 29]) and improved UI compared with placebo (NNTB, 9 [CI, 6 to 17]) (96). Low-quality evidence showed that higher doses of mirabegron improved treatment satisfaction and quality of life compared with lower doses (150 mg/d vs. 100 mg/d) (97).

Solabegron Versus Placebo. Evidence was insufficient to determine the effect of solabegron on continence or improving UI, but low-quality evidence showed that it decreased the frequency of UI episodes in a dose-dependent manner (98).

Urgency UI: Other Pharmacologic Treatments

Evidence was insufficient to determine the clinical effectiveness of resiniferatoxin or nimodipine compared with placebo for treatment of UI (11).

Urgency UI: Comparative Effectiveness of Pharmacologic Treatments

- **Fesoterodine Versus Tolterodine.** Moderate-quality evidence showed that fesoterodine achieved continence more often than tolterodine (NNTB, 18 [CI, 11 to 52]) (55, 56, 99). High-quality evidence showed that fesoterodine improved UI more than tolterodine (NNTB, 36 [CI, 17 to 100]) (55, 56, 59, 90).

- **Oxybutynin Versus Tolterodine.** Low-quality evidence showed no difference between oxybutynin and tolterodine for achieving continence (100). Moderate-quality evidence showed no difference for improving UI (66, 68, 100, 101).

Tolterodine Versus Trospium. Low-quality evidence from 1 study showed that tolterodine and trospium were similarly effective at treating urgency UI (100).

Solifenacin Versus Tolterodine. Evidence was insufficient to compare solifenacin with tolterodine for effects on continence or improvement of UI (11).

Trospium Versus Oxybutynin. Low-quality evidence showed no differences between trospium and oxybutynin for effects on continence or improvement of UI (11).

Other Comparisons. Evidence was insufficient to determine the comparative effectiveness on continence or improvement of UI for darifenacin, propiverine, solifenacin, or flavoxate versus oxybutynin; solifenacin versus darifenacin; or tolterodine or solifenacin versus propiverine (11).
Comparative Effectiveness of Pharmacologic Versus Nonpharmacologic Treatments

Low-quality evidence from 1 study showed that PFMT plus bladder training improved UI more than tolterodine alone (102).

Role of Patient Characteristics on Outcomes of Pharmacologic Treatments

Age. Moderate-quality evidence showed that age did not modify clinical outcomes associated with pharmacologic treatment (11). High-quality evidence showed that trospium, oxybutynin, and darifenacin effectively improved UI and quality of life in older women (52, 71, 92). High-quality evidence also showed that solifenacin achieved continence more often than placebo, regardless of age (77).

Race. Evidence was inconclusive about differences among various racial groups.

Baseline Frequency of UI. Low-quality evidence showed that the baseline frequency of UI was not associated with statistically significantly different clinical outcomes for any drugs examined (11). However, women with more frequent UI episodes had slightly greater benefits with active pharmacologic treatment than placebo (103, 104).

Prior Treatment Response. High-quality evidence showed that solifenacin achieved continence more than placebo regardless of the response to previous treatments; a larger dose did not improve an initially poor response (77).

Concomitant Treatments. Moderate-quality evidence indicated that trospium reduced the number of urgency UI episodes regardless of whether the patient was receiving other drugs. Patients receiving 7 or more concomitant medications had more adverse effects than those receiving fewer than 7 (105).

Obesity. Evidence did not show any difference in effectiveness of trospium in achieving continence in obese or nonobese patients (106).

Adverse Effects

Nonpharmacologic Treatments

The risk for adverse effects associated with nonpharmacologic treatments was low.

Pharmacologic Treatments

Appendix Table 2 summarizes the adverse effects associated with pharmacologic treatments, which were similar within drug classes. The most commonly reported adverse effects associated with antimuscarinics included dry mouth, constipation, and blurred vision. Evidence showed that fesoterodine (high-quality; number needed to treat for harm [NNTH], 7 [CI, 5 to 9]) (56, 57, 60, 107, 108), solifenacin (high-quality; NNTH, 6 [CI, 4 to 12]) (78, 79, 82, 109), tolterodine (high-quality; NNTH, 12 [CI, 8 to 21]) (56, 66, 85, 107, 109–116), and trospium (moderate-quality; NNTH, 8 [CI, 6 to 11]) (91–93, 112, 117) had higher rates of adverse effects than placebo. Moderate-quality evidence showed that adverse effects, including dry mouth and headache, were more common with fesoterodine than with tolterodine (NNTH, 11 [CI, 8 to 17]) (99). Dry mouth and insomnia were more frequently reported for oxybutynin than for tolterodine (100).

Dizziness was more frequently reported for trospium, and dry mouth and insomnia were more frequently reported for oxybutynin (100). Tolterodine has also been associated with increased risk for hallucinations (118). Nasopharyngitis and gastrointestinal disorders were more frequent with mirabegron than placebo (96, 97).

Discontinuation of treatment due to adverse effects was common. Evidence showed that discontinuation due to adverse effects was highest for fesoterodine (high-quality; NNTH, 33 [CI, 18 to 102]) (55, 56, 58–60, 119), oxybutynin (high-quality; NNTH, 16 [CI, 8 to 86]) (65–68, 72, 120), propiverine (low-quality; NNTH, 29 [CI, 16 to 77]) (75, 121), solifenacin (high-quality; NNTH, 78 [CI, 39 to 823]) (77–80, 82, 121–123), and trospium (high-quality; NNTH, 56 [CI, 30 to 228]) (92–94, 117, 124) than for placebo. High-quality evidence showed no statistically significant difference in treatment discontinuation rates due to adverse effects between darifenacin (52–54, 125–127) or tolterodine and placebo (55, 56, 59, 66, 87, 107, 110, 111, 113, 115, 123, 128, 129).

Discontinuation due to adverse effects was higher with fesoterodine than tolterodine (moderate-quality; NNTH, 58 [CI, 33 to 206]) (55, 56, 59, 107) and with oxybutynin than tolterodine (high-quality; NNTH, 14 [CI, 7 to 145]) (67, 68, 101, 110, 130–135). Discontinuation of treatment due to adverse effects did not differ between solifenacin and tolterodine (moderate-quality) (123, 136–138) or between trospium and oxybutynin (low-quality) (100, 139, 140).

Summary

Nonpharmacologic therapies were effective at managing UI, had a large magnitude of benefit for increasing continence rates, and were associated with a low risk for adverse effects. Pelvic floor muscle training alone and in combination with bladder training or biofeedback and weight loss with exercise for obese women were effective at achieving continence and improving UI. Evidence was insufficient to compare nonpharmacologic therapies with one another or with pharmacologic therapies; head-to-head comparisons would be useful.

Pharmacologic therapies were effective and equally efficacious at managing urgent UI and had a moderate magnitude of benefit in achieving continence rates but were associated with adverse effects. In addition, evidence showed that some patients were likely to discontinue pharmacologic treatment because of adverse effects. Solifenacin was associated with the lowest risk for discontinuation due to adverse effects, whereas oxybutynin was associated with the highest risk.

Only darifenacin and tolterodine had risks for discontinuation due to adverse effects similar to placebo. Evi-
Clinical Guideline | Nonsurgical Management of Urinary Incontinence in Women

Figure. Summary of the American College of Physicians guideline on nonsurgical management of urinary incontinence in women.

SUMMARY OF THE AMERICAN COLLEGE OF PHYSICIANS GUIDELINE ON NONSURGICAL MANAGEMENT OF URINARY INCONTINENCE IN WOMEN

<table>
<thead>
<tr>
<th>Disease/Condition</th>
<th>UI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Audience</td>
<td>Internists, family physicians, and other clinicians</td>
</tr>
<tr>
<td>Target Patient Population</td>
<td>Women with UI</td>
</tr>
</tbody>
</table>

Interventions Evaluated
- Nonpharmacologic: PFMT, bladder training, vaginal cones, medical devices, continence services, and weight loss and physical activity
- Pharmacologic:
 - Antimuscarinics: Darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine, trosipin
 - β3-Adrenoceptor agonists: Mirabegron and solabegron
- Other: Duloxetine and estrogen

Outcomes Evaluated
- Continence, improvement in UI, quality of life, and adverse effects
- Continence, ≥50% reduction in the frequency of UI episodes

Benefits
- Nonpharmacologic: Low risk for adverse effects
- Pharmacologic: The most commonly reported adverse effects included dry mouth, constipation, and blurred vision for antimuscarinics; nasopharyngitis and gastrointestinal disorders were associated with the β3-adrenoceptor agonist mirabegron

Harms

Recommendations

Recommendation 1: ACP recommends first-line treatment with PFMT in women with stress UI. (Grade: strong recommendation, high-quality evidence)

Recommendation 2: ACP recommends bladder training in women with urgency UI. (Grade: weak recommendation, low-quality evidence)

Recommendation 3: ACP recommends PFMT with bladder training in women with mixed UI. (Grade: strong recommendation, high-quality evidence)

Recommendation 4: ACP recommends against treatment with systemic pharmacologic therapy for stress UI. (Grade: strong recommendation, low-quality evidence)

Recommendation 5: ACP recommends pharmacologic treatment in women with urgency UI if bladder training was unsuccessful. Clinicians should base the choice of pharmacologic agents on tolerability, adverse effect profile, ease of use, and cost of medication. (Grade: strong recommendation, high-quality evidence)

Recommendation 6: ACP recommends weight loss and exercise for obese women with UI. (Grade: strong recommendation, moderate-quality evidence)

High-Value Care

UI is a common and important health care problem in women that is underreported and underdiagnosed. Clinicians should take a detailed history and ask specific questions about UI, such as the time of onset, symptoms, and frequency. Clinicians should use nonpharmacologic management for UI, such as PFMT for stress UI, bladder training for urgency UI, and PFMT with bladder training for mixed UI, because they are effective, have few adverse effects, and are cheaper than pharmacologic therapies. Although pharmacologic therapy can improve UI and provide complete continence, many patients discontinue medication because of adverse effects.

Clinical Considerations

Vulnerable populations include women aged >65 y, nursing home residents, and women receiving Medicare home care services. At least one half of women with UI do not report the issue to their physician.

Pharmacologic treatment should be based on harms, because most drugs are similarly efficacious. Identifying and managing conditions that may cause UI, such as urinary tract infections; metabolic disorder; excess fluid intake; and impaired mental conditions, such as delirium, are important.

Clinicians should identify whether patients are receiving medications that may cause or worsen UI.

PFMT = pelvic floor muscle training; UI = urinary incontinence.

dence was insufficient to compare most drugs with one another for safety and efficacy. Tolterodine and oxybutynin resulted in the same benefits, but tolterodine caused fewer harms.

Of note, many studies did not fully specify details of the patient populations studied, including whether they received prior treatment for UI, which could potentially influence treatment response. The NNTB and NNT14 should be interpreted with care because of inherent limitations with statistics expressing absolute benefits or harms. The patient population, disease severity, and treatment duration are factors that influence the NNTB and NNT14. In addition, because these statistics are derived from the risk difference, they are ultimately an expression of a specific treatment versus a specific control (active or placebo) and should not be used to indirectly compare NNTB and NNT14 across various treatments. See the Figure for a summary of the recommendations and clinical considerations.

Recommendations

Recommendation 1: ACP recommends first-line treatment with PFMT in women with stress UI. (Grade: strong recommendation, high-quality evidence)
Pelvic floor muscle training increased continence rates and improved UI and quality of life in women with stress UI. Nonpharmacologic therapy with PFMT should be first-line treatment for women with UI.

Recommendation 2: ACP recommends bladder training in women with urgency UI. (Grade: weak recommendation, low-quality evidence)

Bladder training improved UI for women with urgency UI. The addition of PFMT to bladder training did not improve continence compared with bladder training alone for urgency UI.

Recommendation 3: ACP recommends PFMT with bladder training in women with mixed UI. (Grade: strong recommendation, high-quality evidence)

Pelvic floor muscle training combined with bladder training improved continence and UI in women with mixed UI.

Recommendation 4: ACP recommends against treatment with systemic pharmacologic therapy for stress UI. (Grade: strong recommendation, low-quality evidence)

Treatment of stress UI with standard pharmacologic therapies used for urgency UI has not been shown to be effective. Vaginal estrogen formulations improved continence and stress UI, but transdermal estrogen patches worsened UI.

Recommendation 5: ACP recommends pharmacologic treatment in women with urgency UI if bladder training was unsuccessful. Clinicians should base the choice of pharmacologic agents on tolerability, adverse effect profile, ease of use, and cost of medication. (Grade: strong recommendation, high-quality evidence)

Pharmacologic therapies were effective and equally efficacious at managing urgency UI and had a moderate magnitude of benefit in achieving continence rates. However, they were associated with adverse effects and evidence showed that some patients were likely to discontinue pharmacologic treatment because of these effects. For urgency UI, oxybutynin, tolterodine, darifenacin, solifenacin, fesoterodine, and trospium increased continence rates and improved UI.

Evidence was insufficient to evaluate the comparative effectiveness of different drugs and to determine the long-term safety of pharmacologic treatments for UI. Patient characteristics, such as age, race, comorbid conditions, or baseline UI, did not affect the outcomes of the various pharmacologic medications. However, adherence to pharmacologic treatments for UI was poor.

Adverse effects were a major reason for treatment discontinuation. Clinicians and their patients should compare the risk for pharmacologic adverse effects with the severity and bothersomeness of the patient’s symptoms. Appendix Table 2 shows the quality of evidence for outcomes of continence and improvement of UI as well as the adverse effects for the various drugs.

Evidence was insufficient to evaluate the comparative effectiveness of nonpharmacologic versus pharmacologic treatments for UI, and nonpharmacologic treatment should be considered first-line therapy. Evidence showed that nonpharmacologic treatments were better than no treatment in achieving continence and improving UI with a large magnitude of effect and are associated with a low risk for adverse effects. Pharmacologic treatments are associated with adverse effects that may be intolerable and lead to discontinuation of treatment. Clinicians and patients should keep in mind the costs of treatment, especially long-term costs, when choosing treatment.

Recommendation 6: ACP recommends weight loss and exercise for obese women with UI. (Grade: strong recommendation, moderate-quality evidence)

Weight loss and exercise improved UI in obese women with no evident harms. In addition, the benefits of weight loss in obese women extend beyond improvement of UI.

ACP HIGH-VALUE CARE

Urinary incontinence is a common and important health care problem in women that is underreported and underdiagnosed. Clinicians should take a detailed history and ask specific questions, such as the time of onset, symptoms, and frequency. Clinicians should use nonpharmacologic management for UI, such as PFMT for stress UI, bladder training for urgency UI, and PFMT with bladder training for mixed UI, because these therapies are effective, have few adverse effects, and are cheaper than pharmacologic therapies. Although pharmacologic therapy can improve UI and provide complete continence, many patients discontinue medication because of adverse effects.

From the American College of Physicians and University of Pennsylvania Health System, Philadelphia, Pennsylvania; Virginia Tech Carilion School of Medicine and Carilion Clinic, Roanoke, Virginia; and West Los Angeles Veterans Affairs Medical Center, Los Angeles, California.

Note: Clinical practice guidelines are “guides” only and may not apply to all patients and all clinical situations. Thus, they are not intended to override clinicians’ judgment. All ACP clinical practice guidelines are considered automatically withdrawn or invalid 5 years after publication or once an update has been issued.

Disclaimer: The authors of this article are responsible for its contents, including any clinical or treatment recommendations. No statement in this article should be construed as an official position of the U.S. Department of Veterans Affairs.

Acknowledgment: The authors thank Timothy Wilt, MD, MPH, and Tatyana Shamiyan, MD, for updating the literature from the original evidence review for this guideline.

Financial Support: Financial support for the development of this guideline comes exclusively from the ACP operating budget.

Disclosures: Dr. Dallas reports support for travel to meetings for the study or other purposes from the American College of Physicians and stock/stock options from Pfizer, Ortho-McNeil, Sanofi-Aventis, GlaxoSmithKline, and Merck. Dr. Shekelle reports personal fees from...
ECRI Institute and the U.S. Department of Veterans Affairs; grants from the Agency for Healthcare Research and Quality, U.S. Department of Veterans Affairs, Centers for Medicare & Medicaid Services, and Office of the National Coordinator for Health and Information Technology; and a patent with royalties paid to UpToDate. Dr. Shekelle is the coauthor of a draft paper with Dr. Jennifer Anger on “The Quality of Care Provided to Women With Urinary Incontinence” and a published 2013 paper on the “Development of Quality Indicators for Women With Urinary Incontinence” in *Neurology and Urodynamics* that was funded by the Patient-Oriented Research Career Development Award (1 K23 DK080227, JTA) and an American Recovery and Reinvestment Act (ARRA) Supplement Award (5R11EB010649) from the National Institute of Diabetes and Digestive and Kidney Diseases; his role was a mentor to the K23 award, and he received no financial compensation for this role. Dr. Barry reports grants and other support from Informed Medical Decisions Foundation (a nonprofit organization) and other support from Healthwise (a nonprofit organization) outside the submitted work. Dr. Cooke reports support for travel to meetings for the study or other purposes from the American College of Physicians; board membership on the National Board of Medical Examiners; consultancy for the University of Texas; employment at the University of California, San Francisco; and travel/accommodations/meeting expenses unrelated to activities listed from the American Board of Internal Medicine (ABIM) and the Accreditation Council for Graduate Medical Education. Dr. Fitterman is a member of the ABIM Examination Committee. To protect the integrity of Board Certification, the ABIM enforces the confidentiality and its ownership of ABIM exam content, and Dr. Fitterman has agreed to keep ABIM exam content confidential. No ABIM exam content is shared or otherwise disclosed in this article. Dr. Schwartz reports other support from the National Heart, Lung, and Blood Institute, National Institutes of Health, during the conduct of the study; personal fees from Allergan, Bayer, the Blue Cross and Blue Shield Association, General Electric, UBHC, and Genentech; and grants from Pfizer. Authors not named here have disclosed no conflicts of interest. Authors followed the policy regarding conflicts of interest described at www.annals.org/article.aspx?articleid=745942. Disclosures can also be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M13-2410. A record of conflicts of interest is kept for each Clinical Guidelines Committee meeting and conference call and can be viewed at www.acponline.org/clinical_information/guidelines/guidelines/conflicts_cgc.htm.

Requests for Single Reprints: Amir Qaseem, MD, PhD, MHA, American College of Physicians, 190 N. Independence Mall West, Philadelphia, PA 19106; e-mail, aqaseem@acponline.org.

Current author addresses and author contributions are available at www.annals.org.

References

22. Hung HC, Hsiao SM, Chih SY, Lin HH, Tsiao JY. An alternative intervention for urinary incontinence: retraining diaphragmatic, deep abdominal and...

120. Zinner N, Tuttle J, Marks L. Efficacy and tolerability of darifenacin, a muscarinic M3 selective receptor antagonist (M3 SRA), compared with oxybutynin in the treatment of patients with overactive bladder. World J Urol. 2005;23:248-52. [PMID: 1690831]

132. Armstrong RB, Luber KM, Peters KM. Comparison of dry mouth in women treated with extended-release formulations of oxybutynin or

Current Author Addresses: Drs. Qaseem and Starkey: American Col-
lege of Physicians, 190 N. Independence Mall West, Philadelphia, PA
19106.
Dr. Dallas: Virginia Tech Carilion School of Medicine, 1906 Bellview
Avenue, Roanoke, VA 24014.
Dr. Forceia: University of Pennsylvania Health System, 3615 Chestnut
Street, Philadelphia, PA 19104.
Dr. Denberg: Carilion Clinic, PO Box 13727, Roanoke, VA 24036.
Dr. Shekelle: West Los Angeles Veterans Affairs Medical Center, 11301
Wilshire Boulevard, Los Angeles, CA 90073.

Author Contributions: Conception and design: A. Qaseem, T.D. Den-
berg, P. Shekelle.
Analysis and interpretation of the data: A. Qaseem, P. Dallas, M.A.
Forceia, M. Starkey, T.D. Denberg.
Drafting of the article: A. Qaseem, P. Dallas, M.A. Forceia, M. Starkey,
T.D. Denberg.
Critical revision of the article for important intellectual content: P. Dal-
Final approval of the article: A. Qaseem, P. Dallas, M.A. Forceia, M.
Starkey, T.D. Denberg, P. Shekelle.
Statistical expertise: A. Qaseem.
Obtaining of funding: A. Qaseem.
Administrative, technical, or logistic support: A. Qaseem, M. Starkey,
T.D. Denberg.
Collection and assembly of data: A. Qaseem, M. Starkey.

Web-Only References
141. Bo K. Adherence to pelvic floor muscle exercise and long-term effect on
142. Burgio KL, Goode PS, Locher JL, Ulauf MG, Roth DL, Richter HE,
et al. Behavioral training with and without biofeedback in the treatment of urge
incontinence in older women: a randomized controlled trial. JAMA. 2002;288:
2293-9. [PMID: 12425706]
143. de Oliveira Camargo F, Rodrigues AM, Arruda RM, Ferreira Sartori MG,
Giráo MJ, Castro RA. Pelvic floor muscle training in female stress urinary in-
continence: comparison between group training and individual treatment using
PERFECT assessment scheme. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20:
144. Felicisimo MF, Carneiro MM, Saleme CS, Pinto RZ, da Fonseca AM, da
Silva-Filho AL. Intensive supervised versus unsupervised pelvic floor muscle
training for the treatment of stress urinary incontinence: a randomized compar-
/s00192-010-1125-1
Impact of supervised physiotherapeutic pelvic floor exercises for treating female
18094892]
146. Konstantinidou E, Apostolidis A, Kondelidis N, Tsimtsiou Z, Hatziychris-
tou D, Ioannides E. Short-term efficacy of group pelvic floor training under
intensive supervision versus unsupervised home training for female stress urinary in-
147. Ng SC, Lin TL, Chang SJ, Tai HL, Hu SW, Chen GD. Nursing inter-
vention to enhance efficacy of home practice of pelvic floor muscle exercises in
treating mixed urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct.
2008;19:637-42. [PMID: 18004495]
148. Tsai YC, Liu CH. The effectiveness of pelvic floor exercises, digital vaginal
palpation and interpersonal support on stress urinary incontinence: an experi-
10.1016/j.ijnurstu.2009.03.003
149. Berghmans LC, Frederiks CM, de Bie RA, Weil EH, Smeets LW, van
Waalwijk van Doorn ES, et al. Efficacy of biofeedback, when included with
pelvic floor muscle exercise treatment, for genuine stress incontinence. Neurourol
150. Goode PS, Burgio KL, Locher JL, Roth DL, Ulauf MG, Richter HE,
et al. Effect of behavioral training with or without pelvic floor electrical stimula-
tion on stress incontinence in women: a randomized controlled trial. JAMA.
2003;290:345-52. [PMID: 12865375]
151. Glavind K, Nohr SB, Walter S. Biofeedback and physiotherapy versus
physiotherapy alone in the treatment of genuine stress urinary incontinence. Int
Urogynecol J Pelvic Floor Dysfunct. 1996;7:339-43. [PMID: 9203484]
152. Mørkved S, Bo K, Fjortoft T. Effect of adding biofeedback to pelvic floor
muscle training to treat urodynamic stress incontinence. Obstet Gynecol. 2002;
100:730-9. [PMID: 12383542]
floor muscle training, biofeedback-assisted pelvic floor muscle training, and elec-
trical stimulation in the management of overactive bladder. Urology. 2004;63:
61-6. [PMID: 14751349]
154. Gameiro MO, Moreira EH, Gameiro FO, Moreno JC, Padovani CR,
Amaro JL. Vaginal weight cone versus assisted pelvic floor muscle training in the
management of female urinary incontinence. A prospective, single-blind, random-
/s00192-009-1059-7
155. Lee JT, Yoon H, Kim YH. A randomized prospective study comparing new
15515199]
156. Elser DM, Wyman JF, McClish DK, Robinson D, Fantl JA, Bump RC;
Continence Program for Women Research Group. The effect of bladder train-
ing, pelvic floor muscle training, or combination training on urodynamic param-
[PMID: 10494113]
157. Wyman JF, Fantl JA, McClish DK, Bump RC; Continence Program for
Women Research Group. Comparative efficacy of behavioral interventions in the
999-1007. [PMID: 9793038]
158. Schagen van Leeuwen JH, Lange RR, Jonasson AF, Chen WJ, Viktrup L.
Efficacy and safety of duloxetine in elderly women with stress urinary inconti-
nuence or stress-predominant mixed urinary incontinence. Maturitas. 2008;60:
159. Castro-Diaz D, Palma PC, Bouchard C, Haab F, Hampel C, Carone R,
et al; Duloxetine Dose Escalation Study Group. Effect of dose escalation on the
tolerability and efficacy of duloxetine in the treatment of women with stress
[PMID: 17160693]
160. van Kerrebroeck P, Abrams P, Lange R, Slack M, Wyndaele JJ, Yakin I,
et al; Duloxetine Urinary Incontinence Study Group. Duloxetine versus placebo
in the treatment of European and Canadian women with stress urinary inconti-
nence. BJOG. 2004;111:249-57. [PMID: 14961887]
of duloxetine in a nontrial situation. BJOG. 2007;114:543-7. [PMID: 17553560]
162. Herschorn S. Current role of injectable agents for female stress urinary
163. Kim H, Suzuki T, Yoshida Y, Yoshida H. Effectiveness of multidimen-
sional exercises for the treatment of stress urinary incontinence in elderly
community-dwelling Japanese women: a randomized, controlled, crossover trial.
Appendix Table 1. Nonpharmacologic Treatments for UI, Pooled With Random-Effects Model

<table>
<thead>
<tr>
<th>Outcome, by Treatment</th>
<th>Effect on Outcome†</th>
<th>Studies, n</th>
<th>Patients, n</th>
<th>Relative Risk (95% CI)</th>
<th>Absolute Risk Difference (95% CI)</th>
<th>Attributable Events (95% CI, n)</th>
<th>NNTb (95% CI)</th>
<th>Quality of Evidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of stress UI
 PFMT vs. no active treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continence Improve</td>
<td>Improve 10</td>
<td>959</td>
<td>3.8 (2.1 to 6.8)</td>
<td>0.30 (0.19 to 0.41)</td>
<td>299 (188 to 410)</td>
<td>3 (2 to 5)</td>
<td>High</td>
<td>16–18, 20, 22, 23, 27, 163</td>
<td></td>
</tr>
<tr>
<td>Improved UI</td>
<td>Improve 6</td>
<td>510</td>
<td>5.44 (1.57 to 18.83)</td>
<td>0.41 (0.17 to 0.65)</td>
<td>412 (174 to 649)</td>
<td>2 (2 to 6)</td>
<td>High</td>
<td>16, 19–23</td>
<td></td>
</tr>
<tr>
<td>Continence Improve/NS</td>
<td>Improve/NS 2</td>
<td>185</td>
<td>11.2 (2.2 to 56.4)</td>
<td>0.49 (–0.10 to 1.08)</td>
<td>NA</td>
<td>NA</td>
<td>Low</td>
<td>16, 20</td>
<td></td>
</tr>
<tr>
<td>Improved UI</td>
<td>Improve 4</td>
<td>383</td>
<td>3.93 (1.00 to 15.49)</td>
<td>0.39 (0.17 to 0.61)</td>
<td>390 (170 to 610)</td>
<td>3 (2 to 6)</td>
<td>High</td>
<td>16, 19, 20, 24</td>
<td></td>
</tr>
<tr>
<td>Treatment of urgency UI
 Bladder training vs. no active treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved UI</td>
<td>Improve 2</td>
<td>283</td>
<td>3.22 (2.25 to 4.60)</td>
<td>0.43 (0.28 to 0.59)</td>
<td>430 (275 to 585)</td>
<td>2 (2 to 4)</td>
<td>Low</td>
<td>25, 26</td>
<td></td>
</tr>
<tr>
<td>Treatment of mixed UI
 PFMT combined with bladder training vs. no active treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continence Improve</td>
<td>Improve 5</td>
<td>1269</td>
<td>3.8 (1.5 to 9.3)</td>
<td>0.17 (0.06 to 0.27)</td>
<td>166 (63 to 268)</td>
<td>6 (4 to 16)</td>
<td>High</td>
<td>28–32</td>
<td></td>
</tr>
<tr>
<td>Improved UI</td>
<td>Improve 4</td>
<td>1171</td>
<td>4.13 (1.58 to 10.78)</td>
<td>0.39 (0.17 to 0.60)</td>
<td>387 (171 to 603)</td>
<td>3 (2 to 6)</td>
<td>High</td>
<td>28, 29, 31, 32</td>
<td></td>
</tr>
<tr>
<td>Continence services implemented by specialized health care providers vs. no active treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continence Improve/NS</td>
<td>Improve/NS 3</td>
<td>3939</td>
<td>1.6 (1.1 to 2.3)</td>
<td>0.30 (–0.01 to 0.60)</td>
<td>NA</td>
<td>NA</td>
<td>Moderate</td>
<td>33–35</td>
<td></td>
</tr>
<tr>
<td>Improved UI</td>
<td>Improve/NS 2</td>
<td>4038</td>
<td>1.33 (1.06 to 1.68)</td>
<td>0.20 (–0.01 to 0.41)</td>
<td>NA</td>
<td>NA</td>
<td>Low</td>
<td>35, 36</td>
<td></td>
</tr>
<tr>
<td>Comparative effectiveness of treatments for stress UI
 Supervised vs. self-administered PFMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continence NS</td>
<td>NS 4</td>
<td>300</td>
<td>1.92 (0.87 to 4.23)</td>
<td>0.20 (–0.03 to 0.43)</td>
<td>NA</td>
<td>NA</td>
<td>High</td>
<td>141–145</td>
<td></td>
</tr>
<tr>
<td>Improved UI</td>
<td>NS 4</td>
<td>283</td>
<td>1.51 (0.85 to 2.67)</td>
<td>0.14 (–0.05 to 0.32)</td>
<td>NA</td>
<td>NA</td>
<td>Moderate</td>
<td>141, 146–14</td>
<td></td>
</tr>
<tr>
<td>PFMT with biofeedback using vaginal EMG probe vs. PFMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continence NS</td>
<td>NS 6</td>
<td>542</td>
<td>1.27 (0.88 to 1.85)</td>
<td>0.08 (–0.03 to 0.19)</td>
<td>NA</td>
<td>NA</td>
<td>High</td>
<td>143, 149–153</td>
<td></td>
</tr>
<tr>
<td>Improved UI</td>
<td>NS 3</td>
<td>320</td>
<td>0.78 (0.58 to 1.06)</td>
<td>–0.11 (–0.26 to 0.04)</td>
<td>NA</td>
<td>NA</td>
<td>Moderate</td>
<td>21, 27, 154</td>
<td></td>
</tr>
<tr>
<td>Comparative effectiveness of treatments for urgency UI
 PFMT combined with bladder training vs. bladder training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continence NS</td>
<td>NS 4</td>
<td>440</td>
<td>1.02 (0.91 to 1.14)</td>
<td>0.01 (–0.08 to 0.09)</td>
<td>NA</td>
<td>NA</td>
<td>High</td>
<td>156, 157</td>
<td></td>
</tr>
</tbody>
</table>

EMG = electromyography; NA = not available; NNTb = number needed to treat for benefit; NS = no significant difference based on relative and absolute risk; PFMT = pelvic floor muscle training; UI = urinary incontinence. Clinically important improvement in UI was defined as a ≥50% reduction in UI frequency.

† Adapted from reference 11. Relative risk/absolute risk where noted. “Improve” signifies that the treatment provided benefit vs. the comparator.
Appendix Table 2. Pharmacologic Treatments for UI

<table>
<thead>
<tr>
<th>Outcome, by Treatment*</th>
<th>Effect on Outcome†</th>
<th>Studies, n</th>
<th>Patients, n</th>
<th>Relative Risk (95% CI)</th>
<th>Absolute Risk Difference (95% CI)</th>
<th>Attributable Events (95% CI), n</th>
<th>NNT<sub>T</sub>/NNT<sub>H</sub> (95% CI)</th>
<th>Adverse Effects</th>
<th>Quality of Evidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of stress UI</td>
<td></td>
</tr>
<tr>
<td>Duloxetine vs. placebo</td>
<td>Continence</td>
<td>Worsen/NS</td>
<td>2</td>
<td>736</td>
<td>0.92 (0.86 to 0.99)</td>
<td>-0.03 (-0.12 to 0.06)</td>
<td>NA</td>
<td>NA</td>
<td>Low</td>
<td>44, 45</td>
</tr>
<tr>
<td></td>
<td>Improved UI</td>
<td>Improve/NS</td>
<td>4</td>
<td>1128</td>
<td>1.68 (0.94 to 3.00)</td>
<td>0.08 (0.01 to 0.14)</td>
<td>75 (7 to 142)</td>
<td>13 (7 to 143)</td>
<td>High</td>
<td>44–46, 49</td>
</tr>
<tr>
<td></td>
<td>Discontinuation due to adverse effects</td>
<td>Worsen</td>
<td>9</td>
<td>3252</td>
<td>4.40 (3.24 to 5.86)</td>
<td>0.13 (0.06 to 0.19)</td>
<td>129 (64 to 193)</td>
<td>8 (5 to 16)</td>
<td>Low</td>
<td>44–46, 48, 50, 158–161</td>
</tr>
<tr>
<td>Intravaginal estriol plus PFMT vs. intravaginal estriol</td>
<td>Continence</td>
<td>Improve</td>
<td>1</td>
<td>206</td>
<td>8.1 (4.5 to 14.7)</td>
<td>0.69 (0.59 to 0.79)</td>
<td>NA</td>
<td>1 (1 to 2)</td>
<td>Low</td>
<td>43</td>
</tr>
<tr>
<td>Treatment of urgency UI</td>
<td></td>
</tr>
<tr>
<td>Antimuscarinics</td>
<td>Improved UI</td>
<td>Improve</td>
<td>3</td>
<td>1011</td>
<td>1.3 (1.2 to 1.5)</td>
<td>0.12 (0.06 to 0.17)</td>
<td>117 (57 to 177)</td>
<td>9 (6 to 18)</td>
<td>High</td>
<td>52–54</td>
</tr>
<tr>
<td></td>
<td>Discontinuation due to adverse effects</td>
<td>NS</td>
<td>7</td>
<td>3138</td>
<td>1.2 (0.8 to 1.8)</td>
<td>0.00 (--0.01 to 0.02)</td>
<td>NA</td>
<td>NA</td>
<td>High</td>
<td>52–54, 125–127</td>
</tr>
<tr>
<td></td>
<td>Discontinuation due to failure</td>
<td>NS</td>
<td>4</td>
<td>1280</td>
<td>0.6 (0.2 to 1.7)</td>
<td>-0.01 (--0.02 to 0.01)</td>
<td>NA</td>
<td>NA</td>
<td>Moderate</td>
<td>53, 126, 127</td>
</tr>
<tr>
<td>Fesoterodine vs. placebo</td>
<td>Continence</td>
<td>Improve</td>
<td>3</td>
<td>3110</td>
<td>1.5 (1.1 to 1.9)</td>
<td>0.13 (0.09 to 0.17)</td>
<td>132 (90 to 174)</td>
<td>8 (6 to 11)</td>
<td>Moderate</td>
<td>55–57</td>
</tr>
<tr>
<td></td>
<td>Improved UI</td>
<td>Improve</td>
<td>2</td>
<td>1896</td>
<td>1.3 (1.2 to 1.5)</td>
<td>0.10 (0.06 to 0.15)</td>
<td>100 (56 to 145)</td>
<td>10 (7 to 18)</td>
<td>High</td>
<td>56, 58–60</td>
</tr>
<tr>
<td></td>
<td>Adverse events</td>
<td>Worsen</td>
<td>5</td>
<td>4790</td>
<td>1.4 (1.2 to 1.6)</td>
<td>0.15 (0.11 to 0.19)</td>
<td>149 (112 to 185)</td>
<td>7 (5 to 9)</td>
<td>High</td>
<td>56, 60, 107, 108</td>
</tr>
<tr>
<td></td>
<td>Discontinuation due to adverse effects</td>
<td>Improve</td>
<td>4</td>
<td>4433</td>
<td>2.0 (1.3 to 3.1)</td>
<td>0.03 (0.01 to 0.06)</td>
<td>31 (10 to 56)</td>
<td>33 (18 to 102)</td>
<td>High</td>
<td>55, 56, 58–60, 119</td>
</tr>
<tr>
<td></td>
<td>Discontinuation due to failure</td>
<td>NS</td>
<td>2</td>
<td>1896</td>
<td>0.6 (0.2 to 2.5)</td>
<td>-0.01 (--0.03 to 0.02)</td>
<td>NA</td>
<td>NA</td>
<td>Moderate</td>
<td>56, 58, 60, 162</td>
</tr>
<tr>
<td>Oxybutynin vs. placebo</td>
<td>Continence</td>
<td>Improve</td>
<td>4</td>
<td>992</td>
<td>1.7 (1.3 to 2.1)</td>
<td>0.11 (0.06 to 0.16)</td>
<td>114 (64 to 163)</td>
<td>9 (6 to 16)</td>
<td>High</td>
<td>61–65</td>
</tr>
<tr>
<td></td>
<td>Improved UI</td>
<td>Improve</td>
<td>9</td>
<td>1244</td>
<td>1.5 (1.2 to 1.9)</td>
<td>0.17 (0.10 to 0.24)</td>
<td>167 (95 to 240)</td>
<td>6 (4 to 11)</td>
<td>Moderate</td>
<td>24, 61, 62, 64, 66–73</td>
</tr>
<tr>
<td></td>
<td>Discontinuation due to adverse effects</td>
<td>Worsen</td>
<td>5</td>
<td>1483</td>
<td>1.7 (1.1 to 2.5)</td>
<td>0.06 (0.01 to 0.13)</td>
<td>63 (12 to 127)</td>
<td>16 (8 to 86)</td>
<td>High</td>
<td>65–68, 72, 120</td>
</tr>
<tr>
<td>Propiverine vs. placebo</td>
<td>Continence</td>
<td>Improve</td>
<td>2</td>
<td>691</td>
<td>1.4 (1.2 to 1.7)</td>
<td>0.16 (0.09 to 0.24)</td>
<td>163 (86 to 239)</td>
<td>6 (4 to 12)</td>
<td>Low</td>
<td>74, 75</td>
</tr>
<tr>
<td></td>
<td>Improved UI</td>
<td>Improve</td>
<td>3</td>
<td>985</td>
<td>1.6 (1.3 to 2.0)</td>
<td>0.19 (0.13 to 0.25)</td>
<td>192 (132 to 252)</td>
<td>5 (4 to 8)</td>
<td>Moderate</td>
<td>74–76</td>
</tr>
<tr>
<td></td>
<td>Discontinuation due to adverse effects</td>
<td>Worsen</td>
<td>2</td>
<td>1401</td>
<td>2.6 (1.4 to 5.0)</td>
<td>0.03 (0.01 to 0.06)</td>
<td>34 (13 to 61)</td>
<td>29 (16 to 77)</td>
<td>Low</td>
<td>75, 121</td>
</tr>
</tbody>
</table>
Appendix Table 2—Continued

<table>
<thead>
<tr>
<th>Outcome, by Treatment*</th>
<th>Effect on Outcome†</th>
<th>Studies, n</th>
<th>Patients, n (95% CI)</th>
<th>Relative Risk (95% CI)</th>
<th>Absolute Risk Difference (95% CI)</th>
<th>Attributable Events (95% CI), n</th>
<th>NNTB/NNTH (95% CI)</th>
<th>Adverse Effects</th>
<th>Quality of Evidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solifenacin vs. placebo</td>
<td></td>
</tr>
<tr>
<td>Continence</td>
<td>Improve</td>
<td>5</td>
<td>6304</td>
<td>1.5 (1.4 to 1.6)</td>
<td>0.11 (0.06 to 0.16)</td>
<td>107 (58 to 156)</td>
<td>9 (6 to 17)</td>
<td>Dry mouth, blurred vision, constipation</td>
<td>High</td>
<td>77–81</td>
</tr>
<tr>
<td>Improved UI</td>
<td>Improve</td>
<td>2</td>
<td>1507</td>
<td>1.5 (1.0 to 2.1)</td>
<td>0.18 (0.10 to 0.26)</td>
<td>180 (97 to 263)</td>
<td>6 (4 to 10)</td>
<td></td>
<td>Low</td>
<td>81, 82</td>
</tr>
<tr>
<td>Adverse events</td>
<td>Worsen</td>
<td>3</td>
<td>1713</td>
<td>1.7 (1.2 to 2.4)</td>
<td>0.18 (0.09 to 0.27)</td>
<td>177 (85 to 267)</td>
<td>6 (4 to 12)</td>
<td></td>
<td>High</td>
<td>78, 79, 82, 109</td>
</tr>
<tr>
<td>Discontinuation due to adverse events</td>
<td>Worsen</td>
<td>7</td>
<td>9080</td>
<td>1.3 (1.1 to 1.7)</td>
<td>0.01 (0.00 to 0.03)</td>
<td>13 (1 to 26)</td>
<td>7 (39 to 823)</td>
<td></td>
<td>High</td>
<td>77–80, 82, 121–123</td>
</tr>
<tr>
<td>Discontinuation due to failure</td>
<td>NS</td>
<td>4</td>
<td>2812</td>
<td>1.0 (0.5 to 1.8)</td>
<td>0.00 (−0.01 to 0.01)</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>Moderate</td>
<td>78, 82, 122, 123</td>
</tr>
<tr>
<td>Tolterodine vs. placebo</td>
<td></td>
</tr>
<tr>
<td>Continence</td>
<td>Improve</td>
<td>4</td>
<td>3404</td>
<td>1.2 (1.1 to 1.4)</td>
<td>0.09 (0.04 to 0.13)</td>
<td>85 (40 to 129)</td>
<td>12 (8 to 25)</td>
<td>Autonomic nervous system disorders, constipation, dyspepsia, abdominal pain, dry mouth</td>
<td>High</td>
<td>55, 56, 84, 85</td>
</tr>
<tr>
<td>Improved UI</td>
<td>Improve</td>
<td>7</td>
<td>6119</td>
<td>1.3 (1.1 to 1.4)</td>
<td>0.10 (0.04 to 0.15)</td>
<td>96 (42 to 149)</td>
<td>10 (7 to 24)</td>
<td></td>
<td>High</td>
<td>55, 56, 59, 86–90</td>
</tr>
<tr>
<td>Adverse events</td>
<td>Worsen</td>
<td>12</td>
<td>4162</td>
<td>1.2 (1.1 to 1.3)</td>
<td>0.08 (0.05 to 0.12)</td>
<td>83 (47 to 120)</td>
<td>12 (8 to 21)</td>
<td></td>
<td>High</td>
<td>56, 66, 85, 107, 109–116</td>
</tr>
<tr>
<td>Discontinuation due to adverse effects</td>
<td>NS</td>
<td>10</td>
<td>4466</td>
<td>1.0 (0.6 to 1.7)</td>
<td>0.01 (−0.01 to 0.03)</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>High</td>
<td>55, 56, 59, 66, 87, 107, 110, 111, 113, 115, 123, 128, 129</td>
</tr>
<tr>
<td>Discontinuation due to failure</td>
<td>NS</td>
<td>5</td>
<td>4049</td>
<td>0.5 (0.2 to 0.9)</td>
<td>−0.01 (−0.01 to 0.00)</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>High</td>
<td>56, 59, 87, 113, 123</td>
</tr>
<tr>
<td>Trospium vs. placebo</td>
<td></td>
</tr>
<tr>
<td>Continence</td>
<td>Improve</td>
<td>4</td>
<td>2677</td>
<td>1.7 (1.5 to 2.0)</td>
<td>0.11 (0.08 to 0.14)</td>
<td>114 (83 to 144)</td>
<td>9 (7 to 12)</td>
<td>Dry eye, dry mouth, dry skin, constipation</td>
<td>High</td>
<td>91–94</td>
</tr>
<tr>
<td>Improved UI</td>
<td>NS</td>
<td>2</td>
<td>1176</td>
<td>1.1 (0.6 to 2.0)</td>
<td>0.08 (−0.10 to 0.25)</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>Low</td>
<td>94, 95</td>
</tr>
<tr>
<td>Adverse events</td>
<td>Worsen</td>
<td>5</td>
<td>2967</td>
<td>1.4 (1.2 to 1.7)</td>
<td>0.12 (0.09 to 0.16)</td>
<td>123 (88 to 159)</td>
<td>8 (6 to 11)</td>
<td></td>
<td>Moderate</td>
<td>91–93, 112, 117</td>
</tr>
<tr>
<td>Discontinuation due to adverse effects</td>
<td>Worsen</td>
<td>6</td>
<td>3936</td>
<td>1.5 (1.1 to 1.9)</td>
<td>0.02 (0.00 to 0.03)</td>
<td>18 (4 to 33)</td>
<td>56 (30 to 228)</td>
<td></td>
<td>High</td>
<td>92–94, 117, 124</td>
</tr>
<tr>
<td>β3-Adrenoreceptor agonist Mirabegron vs. placebo</td>
<td></td>
</tr>
<tr>
<td>Continence</td>
<td>Improve</td>
<td>3</td>
<td>1425</td>
<td>1.2 (1.1 to 1.4)</td>
<td>0.09 (0.03 to 0.14)</td>
<td>NA</td>
<td>12 (7 to 29)</td>
<td>GI disorders, nasopharyngitis</td>
<td>Moderate</td>
<td>96</td>
</tr>
<tr>
<td>Improved UI</td>
<td>Improve</td>
<td>3</td>
<td>1425</td>
<td>1.2 (1.1 to 1.3)</td>
<td>0.11 (0.06 to 0.16)</td>
<td>NA</td>
<td>9 (6 to 17)</td>
<td></td>
<td>Moderate</td>
<td>96</td>
</tr>
<tr>
<td>Discontinuation due to adverse effects</td>
<td>NS</td>
<td>1</td>
<td>131</td>
<td>3.0 (0.3 to 28.5)</td>
<td>0.03 (−0.03 to 0.09)</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>Low</td>
<td>97</td>
</tr>
</tbody>
</table>

Note: Outcome and treatment data are not provided for Mirabegron vs. placebo.
Appendix Table 2—Continued

<table>
<thead>
<tr>
<th>Outcome, by Treatment*</th>
<th>Effect on Outcome†</th>
<th>Studies, Patients,</th>
<th>Relative Risk (95% CI)</th>
<th>Absolute Risk Difference (95% CI)</th>
<th>Attributable Events (95% CI), n</th>
<th>NNTB/NNTH (95% CI)</th>
<th>Adverse Effects</th>
<th>Quality of Evidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative effectiveness of antimuscarinics for pharmacologic treatment of urgency UI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fesoterodine vs. tolterodine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continençe Improve</td>
<td>2</td>
<td>2756</td>
<td>1.10 (1.04 to 1.16)</td>
<td>0.06 (0.02 to 0.09)</td>
<td>56 (19 to 92)</td>
<td>18 (11 to 52)</td>
<td>Moderate</td>
<td>55, 56, 99</td>
<td></td>
</tr>
<tr>
<td>Improved UI Improve</td>
<td>3</td>
<td>4425</td>
<td>1.06 (1 to 1.2)</td>
<td>0.03 (0.00 to 0.06)</td>
<td>28 (1 to 57)</td>
<td>36 (17 to 1000)</td>
<td>High</td>
<td>55, 56, 59, 90</td>
<td></td>
</tr>
<tr>
<td>Discontinuation due to adverse effects Worsen</td>
<td>4</td>
<td>4440</td>
<td>1.54 (1.21 to 1.97)</td>
<td>0.02 (0.01 to 0.03)</td>
<td>17 (5 to 31)</td>
<td>58 (33 to 206)</td>
<td>Moderate</td>
<td>55, 56, 59, 107</td>
<td></td>
</tr>
<tr>
<td>Oxybutynin vs. tolterodine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved UI NS</td>
<td>3</td>
<td>947</td>
<td>1.11 (0.94 to 1.31)</td>
<td>0.05 (observer to 0.13)</td>
<td>NA</td>
<td>NA</td>
<td>Moderate</td>
<td>66, 68, 101</td>
<td></td>
</tr>
<tr>
<td>Discontinuation due to adverse effects Worsen</td>
<td>6</td>
<td>2323</td>
<td>1.9 (1.1 to 3.3)</td>
<td>0.07 (0.01 to 0.15)</td>
<td>72 (7 to 154)</td>
<td>14 (7 to 145)</td>
<td>High</td>
<td>67, 68, 101, 110, 130–135</td>
<td></td>
</tr>
<tr>
<td>Solifenacin vs. tolterodine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discontinuation due to adverse effects NS</td>
<td>3</td>
<td>2755</td>
<td>1.28 (0.86 to 1.91)</td>
<td>0.01 (0.00 to 0.03)</td>
<td>NA</td>
<td>NA</td>
<td>Moderate</td>
<td>123, 136–138</td>
<td></td>
</tr>
<tr>
<td>Trospium vs. oxybutynin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discontinuation due to adverse effects NS</td>
<td>2</td>
<td>2015</td>
<td>0.75 (0.52 to 1.1)</td>
<td>0.00 (~0.03 to 0.05)</td>
<td>NA</td>
<td>NA</td>
<td>Low</td>
<td>139, 140</td>
<td></td>
</tr>
</tbody>
</table>

GI = gastrointestinal; NA = not available; NNT_B = number needed to treat for benefit; NNT_H = number needed to treat for harm; NS = no significant difference based on relative and absolute risk; PFMT = pelvic floor muscle training; UI = urinary incontinence; UTI = urinary tract infection.

* Clinically important improvement in UI was defined as a ≥50% reduction in UI frequency.
† Adapted from reference 11. Relative risk/absolute risk where noted. “Improve” signifies that the treatment provided benefit versus the comparator. “Worsen” signifies that the treatment resulted in harm versus the comparator.
CORRECTION: NONSURGICAL MANAGEMENT OF URINARY INCONTINENCE IN WOMEN

In a recent guideline (1), recommendations 2 and 3 should read as follows. Recommendation 2: ACP recommends bladder training in women with urgency UI. (Grade: weak recommendation, low-quality evidence). Recommendation 3: ACP recommends pelvic floor muscle training with bladder training in women with mixed UI. (Grade: strong recommendation, high-quality evidence).

This has been corrected in the online version.

Reference